소년코딩

삼각함수

삼각함수란 그 이름처럼 삼각형의 변의 길이와 각도에 관한 함수다.

많은 종류가 있지만 중요한 cos(코사인), sin(사인), tan(탄젠트) 세가지를 알아보자.

삼각형

sin      

cos      

tan


이들 함수는 주로 좌표상에서 어떤 한 점 P(x, y)(x>= 0 and y>=0)를 생각 했을 때,

점 P와 원점 O를 잇는 선분의 길이를 r, 선분 OP와 x축이 이루는 각을 θ라고 하면 다음처럼 된다.

사각형

sin   

cos     

tan


cossin의 식을 변형하면 다음처럼 된다.

  • x=rcos
  • y=rsin

이 식에서 r을 고정한 채로 θ를 변화시키면 반지름이 r인 회전 운동을 시킬 수 있고,

원

θ를 고정한 채로 r을 변화시키면 각도 θ방향으로 물체를 이동시킬수 있다.

 

원2

또한 tan에 관해서는 tan함수의 역함수인 arctan(아크탄젠트)라는 함수를 이용하여 θ을 알 수있다.

tan


각도 범위를 한정하지 않은 삼각함수

지금 까지는 (x, y >=0)이 경우, 좌표계로 말하면 1사분면에 한정되었다.

그 이유는 삼각함수 cos, sin, tan를 직각삼각형을 이용해서 정의했을 때, 각도 θ90보다 작아야만 하기 때문이다.

 

그래서 각도 θ의 범위가 한정되지 않고 위 정의가 그대로 성립되도록 하기 위해 '단위원'이라는 개념을 사용해서 삼각함수를 다시 정의해야 한다.

이 정의에서는 원점 O를 중심으로 한 반지름이 1인 원(단위원)을 생각하고, 그 단위원상의 점 P(x, y)를 사용해서 정의한다.

원3

sin   

cos     

tan

이렇게 하면 각도를 한정짓지 않고 삼각함수를 정의할 수 있으므로 좌표상의 어느 사분면에서도 사용할 수 있어 편리하다.

그리고 컴퓨터상의 삼각함수 cos, sin, tan등은 이 단위원을 사용한 정의를 바탕으로 만들어져 있어 각도의 크기를 신경 쓰지않고 사용할 수 있다.


각도 θ의 단위

일상 생활에서는 각도의 단위로써 '도수법(한 바퀴가 360)'가 사용되지만 컴퓨터상의 삼각함수에서는 라디안이라는 단위를 이용한 호도법을 사용한다.

1 라디안(radian) 은 원둘레 위에서 반지름의 길이와 같은 길이를 갖는 에 대응하는 중심각의 크기로 무차원의 단위이다.

호도법은 반지름이 1인 단위원을 생각해봤을 때, 각도를 단위원상의 호의 길이로 나타내는 방법이다.

circlecircle2

(원의 둘레 공식: 2πr)

단위원(반지름이 1)을 반원의 길이는 π이므로  180=rad가 된다.

180=rad → 180

따라서 180라는 말은 π(=3.14)가 180와 같다는 뜻이 아니라, rad180와 같다는 뜻이다.



math

by 소년코딩

추천은 글쓴이에게 큰 도움이 됩니다.

악플보다 무서운 무플, 댓글은 블로그 운영에 큰 힘이됩니다.

'수학 이야기' 카테고리의 다른 글

운동상태의 그래프  (0) 2016.12.27
운동상태: 속도와 가속도  (0) 2016.12.27
방향을 나타내는 방법: 벡터  (3) 2016.09.28
댓글 로드 중…

블로그 정보

소년코딩 - 소년코딩

소년코딩, 자바스크립트, C++, 물리, 게임 코딩 이야기

최근에 게시된 이야기